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Prediction equations constructed from multiple linear regression

analyses are often intended for use in predicting response values

throughout a region of the space of the predictor variables. Criteria

for evaluating prediction equations, however, have generally con-

centrated attention on mean squared error properties of the estimated

regression coefficients or on mean squared error properties of the

predictor at the design points. If adequate prediction throughout

a region of the space of predictor variables is the goal, neither of

_ these criteria may be satisfactory in assessing the predictor. In

this paper integrated mean squared error is used as a criterion to

determine when the least squares, principal component, and ridge

regression estimators of regression coefficients can produce satis—

factory prediction equations in the presence of a multicollinear

design matrix.
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1. INTRODUCTION

Box and Draper [1] espouse the use of an integrated mean squared

error criterion to evaluate experimental designs proposed for use in

fitting response surface models. Specifically, Box and Draper are

concerned with the appropriate selection of design points X. =

(x.1, x~2, ... , X .), i = 1, 2, ... , n, so that the mean squared

error of the least squares prediction equation, integrated over an

• appropriate region of interest in the p design variables, is suitably

small. Thus, experimental designs can be evaluated with respect to

(i) the variance of the fitted model, (ii) bias incurred when an

incorrect functional form is assumed between the response variable

• and the design variables, (iii) particular regions of interest of the

design variables, and (iv) weighting functions that enable some

• regions of the predictor variables to influence the integrated mean

squared error more heavily than others. The flexibility and intuitive

appeal of integrated mean squared error has resulted in several sub-

sequent papers evaluating both response surface designs (e.g. (2],

[4], [5], [61, [7]) and estimators of the response function (e.g.

[3], [10], [13], [1411 [15], (161 , (21])

The purpose of this paper is to show that integrated mean squared 
~

• error is a valuable tool in evaluating prediction equations arising ~~~~~~~~ 

-

from the use of different estimators of the unknown parameters in

multiple linear regression models. The situation discussed in this •

paper differs from the one posed in most of the above articles in I L

that we assume the data analyst has no control over the predictor

(design) variables; i.e., the experimenter cannot select the values
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I
• of the predictor variables for which data on the response variable

is to be obtained . This type of data is often characterized by the

occurrence of multicollinearities among the predictor variables and

consequent poor prediction when least squares prediction equations

are employed (see, for example, [11], [191 , and [20]). For these

reasons, biased regression estimators have become very popular when

regression data is multicollinear .

Hocking [11] and Gunst and Mason [8] reference much of the lit-

erature dealing with comparisons of estimators of regression coef-

ficients. Overwhelmingly, these articles deal with comparisons using

• the mean squared errors of the estimated regression coefficients,

• although a few authors examine pointwise mean squared errors of the

¶ prediction equations at the design points. Yet the potential ~dvan—

tages of assessing a prediction equation using integrated mean squared

error are many: the variances of the prediction equations are in-

cluded in the assessment, biases due to the use of biased regression

d’ 
estimators and also due to misspecifications of the model can be

evaluated, regions of the space of predictor variables for which

one estimator has smaller integrated mean squared error than another

can be identified, and unequal weightings can be assigned to regions

of the space of predictor variables to reflect different requirements

for accurate prediction.

Section 2 of this paper models the problem addressed in this

paper and contrasts it with the one considered by Box and Draper.

One important distinction noted between regression analysis and

choosing an experimental design to estimate response surface models
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I is that, unlike the design problem, multicollinearities among the

- predictor variables in a regression analysis frequently cause the

- •
. variance portion of the integrated mean squared error to ‘,e much

• larger than the bias due to using a biased estimator of the regression

-~~~~~ coefficients. In Sections 3, 4, and, 5, general expressions for

integrated variance, integrated squared bias, and integrated mean

0 
• 

squared error, respectively, are presented, along with specific

results for models with two predictor variables. Section 6 briefly

discusses estimation of integrated mean squared error and presents

a numerical example. Conclusions and recommendations for further

research are given in Section 7.

2. THE PROBLEM

We will concentrate attention in this article to multiple linear

regression models of the following form:

(2.1)

where Y is an (n )< 1) vector of response variables, is an unknown

constant, 1 is an (n x 1) vector of ones, X = 

~~~~~~~~ ~2’ 
, X ]  is

an (n X p) full column rank matrix of known nonstochastic predictor

• variables, B is a (p X 1) vector of unknown regression coefficients,

and e is an (n X 1) vector of random error terms with c - N(O, 021).

• Except for the example discussed later in this section, we assume

that model (2.1) has been correctly specified by the experimenter

and that the columns of X have been standardized so that X~ 1 = 0

and 9 X . = 1 for j  = 1, 2, ... , p.
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I Consider a prediction equation of the form
y

0~ 
S

= + 
~~~
‘
~~~ ‘ (2.2)

where U ’ = (U
1

, U
2

, ... , u )  is a vector of standardized (as in
(2.1)) values of the p predictor variables at which a predicted

value of the response variable is desired, and and B are estimators

of the unknown constants in (2.1). If X . 1 = 0, i.e. the predictor

variables are centered, then we will use =

If the prediction equation (2.2) is to be used for a range of

values of the predictor variables, some measure of the adequacy of

prediction throughout this region of the predictor variable space is

needed to assess its efficacy. One such measure is integrated mean

squared error, J, defined as

J = f . . . f  E{Y(u) - E[Y(u)]}2 W(u)du. (2.3)

1~s defined in (2.3), integrated mean squared error incorporates the

di mean squared error of the prediction equation at the point u, i.e.

E{Y(u) - E[Y(u)]}2, weighted by an appropriate function W (u) and

integrated over a region R = R(u). This definition of integrated

mean squared error can be adapted to discrete weight functions and

• 

0 
models in which some predictor variables are functionally related to

- one another; however, we will restrict our attention to continuous

- 
predictor variables for simplicity (Helms [9] treats some of the

complications of the more general definitions of ~3).

Box and Draper (11 analyzed in some detail the choice of an

0~~
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experimental design for fitting a quadratic response surface

Y = + B1x1 + + e (2 .4)

when it was incorrectly assumed that the response surface was linear ,

(2. 5)

We wish to discuss this example to point out the differences that

occur when one can choose the design points and then estimate the

regression coefficients versus the problems that arise when one car’not

do so. Box and Draper assumed that the design points could be centered
n

so that Z = 0 and that the region of interest R could be chosen
• i=l

(through a scaling of X
1
) to be —l < X1 < 1. They also chose the

weight function to be constant throughout R; in particular, they let

W(u) = nc 2 cf ~j  du
1

)~~~ = nci 2
/2. Using least squares estimators of

B0 and B1 it is then easily verified that (note we have not assumed

that E = 1 in this example)
i=l

J = V + B = (l + l/3c)
0
, 

I 
2 2 2 2

+ c~11{c  — 2c/3 + 1/5 + d /3c }, (2 .6)

where the first term on the r.h.s. of (2.6) is the integrated van -

• ance Cv) of the prediction equation, while the second term is the

• integrated squared bias (B), with cx~1 
= nb 2

3~1, 
c = n 1 E

• 

- 
_i n 

~ 
1=1

• a n d d = n  E X~1.1=1

In choosing the design points to minimize (2.6), Box and Draper

noted that, regardless of the value of c, J would be smallest when

~ 

- • - -----— •
~~~~~~
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d = 0. In selecting the value of c to minimize J, however , one must

• specify a value for Alternatively , if V and B are restricted,

unique values of c and a11 can be found to minimize J. For example ,

0 if one considers a situation in which the variance and bias terms

• in (2.6) are equal, one can solve for the values of c and that

• minimize J subject to the restriction V = B.

Box and Draper investigated this further by solving for the

minimizing values of c for four cases: V = ~~ , B = 0 Cc =

V = 4B Cc 0.72); V = B (c = 0.62); and V = 0, B (C = 0.58).

By noting the similarity of the values of in the last three cases

½versus c = ~ for the first one, they reached the rather surprising

conclusion that when the true model is quadratic but one assumes a

• linear one, designs that incorporate contributions from both variance

and bias in the minimization of integrated mean squared error are

very similar to those that ignore variance completely and minimize

the integrated squared bias.

di Through other examples Box and Draper and subsequent authors

showed that this same conclusion (i.e. optimal designs that incor—

* porate both integrated variance and integrated squared bias when

minimizing J are close to the all bias designs) is true in a variety

• of response surface situations. The major distinction between these

examples and a regression analysis is the inability of the experi—

menter in the latter instance to select the design points. In par-

ticular the data analyst performing a regression analysis generally

cannot guarantee, as did Box and Draper, that the columns of X

are mutually orthogonal or that odd sample moments of the are zero.

-•~~~~ • - -- •- -~~---• •- ~~~~~~~~~ - - .-~~~~~~~~~~~—-—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The effects of the nonorthogonality of the columns of X on the con—
~

clusions of Box and Draper can be illustrated by a simple extension

of the above example .

• Suppose that , instead of considering the one variable model

(2 .4 ) , the true model relates the response variable to two predictor

variables as follows:

Y = Bo + + 82X2 + + + e. (2 . 7 )

Again, unknowingly , suppose the experimenter assumes the model is

linear in the two predictor variables, i.e. he assumes

Y = + + + E. (2.8)

In order to make the comparison as similar as possible to the one

variable example considered above, also assume that

E x. = E X . = E X~ X . = E X . X~ = 
~ X~ = E X~ = 0ii i2 il i2 il i2 il i2

• and (2.9)
di

—l 2 —1 2E X . = n  E X . = c ,i1~

with all the summations taken from i = 1 to i = n .  Finally, we

do not assume n 1 E X~ X . = 0 , but that n 1 E X .  X . = C r
il i2 il i2 12

• 
With these assumptions , and letting R = { ( x1, X 2

) : —1 < X . ~

—2
= l,2} and W (u) = no /4,

J = V + B = ( l + 2 / 3 c C 1 - r ~2
))

+ (a~1 + ct~ 2
) { ( c  — 1/3)

2 + 4/45) + 2a 11
a 22

(c — 1/3)
2
,

where cii .  = na 2
B.., j = 1, 2. Further simplifying the problem by
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letting a
11 

= a
22 

= a yields

J = V + B = C]. + 2/3cCl — r~ 2 ) )

+ ~
2
{4(c - 1/3)

2 
+ 8/45) . (2.10)

If r
12 

= 0, (2.10) is the two variable analog of (2.6) (with d = 0 ) .

• The value of c that minimizes (2.10) when r12 0 and V = B

is 0.61 and a = 3.892. With these values of and a, V = B = 2.788.

As a function of r
12
, the values of c½ that minimize the integrated

variance (2.10) when B = 2.788 are = 0 .68Cr 12 
= .90), 0.73Cr12 

=

.95), 0.89Cr12 0.99), and 1.23Cr12 
= .999). In addition, if =

0.61 is used to construct an experimental design for this example

but r
12 ~ 

0, the integrated squared bias, B, remains constant (since

B is not a function of r
12
) but the integrated variance becomes

V = 10.409Cr
12 

.90), 19.336(r12 
= .95), 90.839Cr12 

= .99), and

895.342(r
12 

= .999). Finally, if B = 2.788, the values of needed

to insure that V = B are c 2 
= 0.61Cr = 0 ) ,  1.40Cr = .90), 1.9612 12

(r
12 

= .95), 4 . 3 3 Cr 12 = .99), and 13.66Cr
12 

= .999).

Thus in selecting an experimental design for fitting (2.8) when
a

C2.7) is the correct model, the integrated variance cannot be ignored

1 
• 

if r
12 

is close to 1.0. Values of r12 near 1.0 frequently arise with

regression data and can result in an extremely large integrated vari-

ance for the least squares prediction equation, even if the model is

correctly specified. Thus, although biased regression estimators

contribute nonzero integrated squared biases to J, the reduction in

integrated variance over the least squares estimator can result in an

overall reduction in integrated mean squared error with multicollinear

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _
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data. The magnitude of a reduction in integrated mean squared error

• over least squares, if any, will depend on the region of interest

and the weight function used in (2.3), as well as on the particular

• biased estimator employed.

3. INTEGRATED VARIANCE

- 

0 

The integrated mean squared error C2.3) of a prediction equa-

tion can be partitioned into two components: integrated variance,

V, and integrated squared bias , B, where

V = 1.. .1 Var{yCu) } W C u ) du (3.1)
R

and

B = J . . .f  {E[Y (u) ) - E I Y ( u ) ] } 2 W ( u ) du. (3 .2 )
R

•

~
The three regression estimators to be compared in this article are

the ordinary least squares (LS), simple ridge regression (RR), and

principal component (PC) estimators defined in equations (3.4) - (3.6).

‘S To facilitate the evaluation of the associated prediction equations,

define the latent roots of X’X by 9, < 9- < ... < 9, and the corre-1 -  2 -  - p
* sponding orthonormal latent vectors by 

~1
, 
~2’ 

V~ . It is well—

known , then , that

p —1 p —1
X’X = E 2..V .V~ and ( X ’ X )  = E 9,~ V V ’ .

j= l ~~~~~ j= l ~

Using (3.3), the LS estimator of B can be wri t ten  as

-‘ p
8 (X ’X) ~X ’Y  = E 9, .

1C .V .,  (3 .4 )
—LS — • — j  j — jj — l

4

- - - - •~ •~~ •- -•~~~ - -rn -~~-- - •- -
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where C . = V~X’Y. The PC estimator we will examine deletes terms
3 — J —

• from C3.4) corresponding to multicollinearities among the predictor

variables as indicated by the presence of small latent roots of X’X

0 Csee Marquardt [18], Mansfield [17], and Gunst and Mason [8] for a

more complete discussion of this estimator, including justification

for deleting terms solely on the basis of the magnitudes of the latent

roots of X’x). If the terms corresponding to r small latent roots

are deleted from C 3 . 4 )  the resulting PC estimator of B is

1E 2. . C . V . . (3 . 5 )
j=r+1 ~

Finally, for k > 0 the RB. estimator (Hoerl and Kern-iard [12]) is given

by

1 P 1
B = ( X ’X  + kI) x’y = E (2 . . + Ic ) C . V .. (3.6)
—RR — 

j =1 ~ 3— 3

In deriving the integrated mean squared error of the RB. estimator we

di assume that Ic is a fixed constant, i.e. nonstochastic. Although in

practice k is typically selected according to a stochastic method

(e.g. Ridge Trace, Ic estimated using 8LS 
and ~

2 
etc.), nonrandom

selection rules utilizing only characteristics of X are conceivable .

One such procedure is introduced in Section 6.

Assuming that C2.l) is the correct model , the integrated vari-

ances of the above three estimators are, respectively,

v = n~~a
2 

+ ~
2 t r {( x ’x )~~~~ } = n 1cy

2 
+ ~ 2 

~ V . ( 3 . 7)• LS j =1 ~~~~ — J

= n 1a
2 

+ ~
2 tr~(x’x) t} = n

1cy2 + ~
2 

j~~~+1 
2 1v’ 

~ 
V . (3 .8)

• ~~~---- •.---. -• ~~ -- •  --•_
~~~~~~•~~-~~~ — •~~~~~_•—-—— ~~~~~~~ •~~-—-——•—-•~~~—•— • -• .614
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and

v~~ = n~~~a
2 

+ 
2 tr{(x’x + kI) 1 X’x(x’x + kI)~~~~ }

= 
—1~~2 

+ ~
2 

~ 9 , ( 9 ,  + k) 2 V~ ~ V ., (3.9)
~ ~~~ 

— J

p
• where (X’X) = E 2.. 1v .v~ and ~ is the second order moment matrix

• j=r+l ~
• 

• of the weight function in the region R:

= f .  . .f uu ’ W ( u ) du. (3.10)
R

Note immediately that ~~~ < V
LS 

for r > 1 and V~~ < VLS for

k > 0; i.e. both PC and RR result in reductions in integrated vari-

ance over LS. With multicollinear data these reductions can be quite

* 
large since the prediction equations using the biased estimators

either eliminate (PC) or dampen (RB.) the first few terms of (3.7)

• that contain the largest values of 9~1• The magnitude of ~~~ rela-

tive to V~~ depends on the number of terms , r , deleted by the PC

di estimator of B and the value of k selected for the RR estimator.

One of the simplest forms of ~ in (3.10) occurs when B. is a sym-

* metric region about U = 0 in each u .  and the following two conditiofls

hold for the weight function W ( u ) :

Ci) W (u) is normalized so that 1.. .1 W ( u ) du = 1 and is an
R

even function of each U.; and
3

Cii) f .  . .f u~ W ( u ) d u  = T , a constant, for j = 1,2 , ... , p.
B. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ .—-- - --——~~
—

~~
p -——~~~~~~~~~~ 
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For example, many uniform, triangular, and exponential weight func—

• tions satisfy these requirements . When these conditions are valid

= TI , (3.11)

and the integrated variances become, respectively ,

v = 
— 1 2  

+ C T  E £:1 (3.12)LS j=l ~

V = n 1
~~

2 
+ C T  ~ 9,~~1 (3.13)

PC 
j=r+l ~

1 2  2and V = n + a -r ~ 9 . (9,~ + Ic ) 2 . (3.14)
j=l ~

Now to further illuminate the tradeoffs in integrated variance

among these three prediction equations, we consider the case of p = 2

predictor variables and ~ defined as in (3.11). If r
12 

again denotes

• the ~corre1ation” between the n observations on the two predictor

variables, then = 1 - r12 and 
~2 

= 1 + r
12 

(assuming w.l.o.g.

di that r
12 

> 0). If the PC estimator deletes the term corresponding

to the smallest latent root, then

V~~ 2(1 — r~ 2
) 1, (3 .15)

• —1(1 + r 12
) , (3.16)

and

V
~ R 

= (1 — (1 — r
12 

+ k )
2 

+ (1 + r
12

) ( 1 + r
12 

+ k) 2 , (3 .17)

where, for each predictor, V~ (V — n~~~a
2

/o
2

T .  Figure 1 contains

graphs of V~~, V
~c~ 

and V~~ (for several values of k) as a function

! ~
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of r
12

.

- 

[Insert Figure 1]

The comparisons among the predictors that are evident from

• Figure 1 include the following:

(i)  LS has uniformly larger integrated variance than PC and

RB., with V~~ asymptotically unbounded as r
12 

-~- 1;

• (ii) for Ic approximately 0.4 or less the integrated variance

of HR is larger than that of PC except for values of

extremely close to 1.0.

• Thus for p = 2 predictor variables and ~ = r1 , both biased estimators

greatly reduce the integrated variance over that obtainable by LS

except for RB. when Ic is small and , simultaneously, r
12 

is not close

to 1.0; i.e. except when k is small and the two predictor variables

are not severly multicolliriear . Comparing PC with RB. reveals that

V~~ is generally smaller than V~~ unless k is relatively large or

* 
r12 is extremely close to 1.0.

di Another comparison between V
PC 

and V
RR 

fo r p = 2 is presented

in Figure 2 , which displays the regions for which V
PC 

< V
HR 

and

~~~ 
> V

HR 
as a f unction of r 12 . Agai n this graph shows that for

small k ~~~ < V~~ unless r12 
is large and that VPC > V~~ for large

• k over a wide range of r
12
.

I -~~~~~~
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4. INTEGRATED SQUARED BIAS

The integrated squared biases of the prediction equation (2 .2 )

using coefficient estimators (3 .4)  — (3.6) are , respectively,

B
LS 

= 0 , C4 . l )

B = tr {V V ’B8’ V v’4}PC r r—— r r

= B’V V’~ V V ’ B ,  (4 . 2 )

and B
HR 

= k 2tr {V(L + kI) 1V’ B B ’ V ( L  + kI) 1V ’~~}

• 

= k 2 B ’ V ( L  + kI) 1V’~~V C L + kI) 1V ’ B ,  (4 .3 )

where Vr 
= [

~1~ ~2’ 
V I  and L = diag(2.1, 

~2 ’ , 2.). Al-

though the LS estimator contributes no bias to the integrated mean

squared error , the bias contribution of PC and RB. to their respective

integrated mean squared errors can be small enough to net great re—

di 
ductions over 

~LS 
due to the large reductions in integrated vari-

ance . This is especially true for severely multicollinear data and

weight functions W (u) that give smallest weights to regions that have

the same multicollinearities as those in the matrix of predictor

• var iables , X.

If we again examine the characteristics of regions and weight

f unctions yielding ~ = TI, ( 4 . 2 )  and C4 .3 )  reduce to

r 2Bpc = -r E (V~~ ) ( 4 .4 )
j=l

and B = tk 2 
~ (2. . + k) 2 (V !8) 2

. (4 .5)
RH j l  ~ 

_ J_

0 0 •—
~~~~~~~~~~~

• • - -
~~~~~~~~

—-— • -
~~~

—
~~~~~~~

•- -. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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It is readily apparent from (4 .4)  and (4 .5)  that BPC 
< B

RH when

D < 0 and B > B when D > 0 , wherePC RB. p

r 2 2  p 2 2
D = E Cl — a . ) Z . — E a . Z ., ( 4.6)p j =1 ~ ~ j =r+l 3

~~

Z. = V B ,  and a . = k / C 2 .~ + k ) .  The results of the previous section

suggest that large values of k yield an integrated variance for ridge

regression that is smaller than the integrated variance for principal

components. But there is a tradeoff in integrated squared bias since

large values of k imply that a . 1 for latent roots defining multi—

collinearities Ci e for ~ 
= ~~~~~ 

2 2

’ r)  and hence that

D “ s —  E a .Z. < 0 .
n ”  j =r+l~~~

3

• This property is of course weakened if some of the Z ., j  = 1, 2 , ...,

are large enough to offset the closeness of the corresponding a .  to 1.

For p = 2 predictor variables and ~ =

di

Bp~ = T ( 8
1 

— 82
) 2

/2 (4 .7 )

and

= Tk 2
~~($ 1-82

) 2 ( 1— r12
+k) 2 

+ (81+82
)2Cl+r

12
+k) 2}/2, (4.8)

again assuming r = 1 and r 12 > 0. As a function of a
1

, a
2
, Z

1
, and

Z 2 , these expressions are

Bpc = TZ
1 and B

RH 
= T { a~~z~~ + a~ z~~}. (4 .9)

• 0 _ _ _ __ _ _
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I: I
Figure 3 depicts regions of the CZ 1, Z 2

) — plane for which

• B~~ < B
RH 

for p = 2 predictor variables , 4 = TI , r12 
= 0.95, and

four choices of k. Similar regions occur for other values of r
12

,

only the slopes of the lines change. The locus of points for which

~~~~~ BRH is two lines passing through the origin with slopes

+ a
2 

(1 — a1
) 2

[Insert Figure 3]

• Examination of a prediction equation with p = 3 predictor

variables reveals some general characteristics of integrated bias

comparisons between PC and HR. In this case (recall equation (4.6))

2 2 2 2  2 2
Cl — a1

) Z 1 
— a

2
Z

2 
— a3Z 3 r = I

D 3 
=s

~ C4. l 0)

“ ( 1 —  a~~) Z ~ + (1 - a~ ) Z ~ — a~ Z~ r = 2

The general shape of the region defined by (4.10) when PC deletes

di r = 1 terms from C3.4 )  to obtain (3 .5) is that of an elliptical

cone centered on the Z
1 axis. Outside this cone B

PC 
< B

HR
, while

inside it Bp~ 
> B

HR
; i . e . ,  Bp~ 

< B
RH 

unless is suff ic ient ly  large .

This comparison generalizes to an arbitrary number of predictor

• variables, p, for r = 1.

When p = 3 and r = 2 , D 3 indicates that the general shape of

the region comparing Bp~ and BHR 
is again characterized by an ellip-

tical cone, now centered on the Z3 axis. Inside this cone Bp~ < B
HR?

-
~~ while outside it Bpc > B

HR. So Bpc < B
RH for arbitrary if neither

Z~ nor is too large. This conclusion remains valid for arbitrary

p provided r = p - 1.
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• I 5. INTEGRATED MEAN SQUARED ERROR

• The tradeoffs in integrated variance and integrated squared

bias that were uncovered in the previous two sections can be eval-

uated by considering the integrated mean squared errors of the pre-
• diction equations :

• 
- 

~ LS 
= ~~~~~ + ~2 tr {(X’ x ) 1

~ }, (5.1)

- = ~ — l~~2 
÷ ~

2 tr { (x ’x) j } + B ’V v’4v v’B, (5 .2)
PC — r r  r r -

= n~~ a
2 

+ ~ 2 tr {Cx’ x + kI)~~~x ’ X C X ’ X  + kI) 1
4)

+ k
2

8 ’V (L  + kI)  1V ’4 V ( L  + kI) 1V ’ B .  (5. 3)

Rather than attempting a complicated comparison of expressions

(5.1) - (5 .3) , we again simplify the problem by specifying that

4 = t i .  Then,
di

2 1 
p 1

J = a {n + r E 9,~ } , ( 5.4)
LS . _1  3

I 3—~’-

2 — 1  p —1I = a {n + r E 2. . ) + T E Z , ( 5 .5 )
• • j =r+1 3 j =l 3

• p 2 — 2 2
and .r = a2{n ~~ + T E 2 . . C 9~. + k ) }  + tIc E ( 9 W . + k) Z . . (5.6)

RH j=1~~ ~ j=1 ~

Examination of (5 .4)  and (5 .5 )  reveals that 
~LS ~ ~PC 

when E <  0

and 
~LS 

> when E > 0 , where 

-1 2 2E = E ( 2 . .  0 — Z ) .  (5~ 7)
• p 

~=1•
j  j
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- ‘I Comparing (5.4) with (5.6) reveals that 
~LS ~ ~RR 

when F < 0 and

~LS 
> 

~RR 
when F > 0, where

2 2F = E Cb .  — a.Z.), (5.8)
P =l ~

b . = ko2 C2 Z ~ + k ) / [2 . . ( 2 . . + k) 2 ] ,

and a . = k/ (2 . . + k) as in Section 4. Finally , f rom ( 5 .5 )  and (5.6) ,

J < J when D < d and J > J when D > d , where D is de-P C -  HR p -  p PC RB. p p p

fined in (4.6 )  and

= (V
HR 

—

p r
= E b .  — 

2 E 2. . ( 2. . + k) 2 . ( 5.9)
j r+l~~ j =l~~ ~

For the two variable prediction equation considered in the

previous sections ,

= 2a~~(1 - r~ 2)~~~, (5. 10)

= a~~ i + r 12
) 1 

+ Z~ , (5.11)

• and = a2
~~(l— r12

) (l— r12+k) 2 
+ (l+r

12
) (l+r

12
+k) 2 }

+ k 2 {( l— r12+k) 2Z~ + (l+r
12

+k) 2Z~ }, (5. 12)

• where J~ = (J — n 1
0

2
)/ T . Figures 4 and 5 pictorially reveal the

combined effects of integrated variance and integrated squared bias

- S - - •~~~~~• •~~ ________________—
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of the two variable predictors by plotting (5.10) - (5.12) as a

• 
- function of Z~, for ~

2 
= 1 (hence Z~ measures the magnitude of

relative to 0
2
). Two values of r

12 
are used to indicate the

changes in the curves as r
12 

is changed , and only the curves for

Z~ = 0 are depicted. Nonzero values of Z~ increase the intercept

values for 
~RR 

but leave the curves for and 
~~c 

unchanged . So

this is a “worst case” comparison of and J~~ with 
~RR

[Insert Figures 4 and 51

In general, these figures support the contention that reductions

in integrated mean squared error over LS are possible with either

biased estimator provided that is not too large relative to a
2

(and to a lesser extent, provided that Z~ is not too large for RR).

Due to the magnitude of V
LS 

for the stronger multicollinearity ,

r
12 

= 0.99, substantial reductions in integrated mean squared error

are seen to be possible with the biased estimators when the predictor

variables are extremely multicolliiiear . The comparison of J* and
di 

indicates that < for smaller values of particularly

for small values of k. Large values of or large selections of

k result in smaller integrated mean squared error for RB. than PC,

provided a large value of Z~ doesn’t compensate for these reductions.

6. ESTIMATION

Helms [10] and Park [221 employ integrated mean squared error

criteria to assess different least squares prediction equations that

arise due to attempts to select acceptable subsets of the original p
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predictor variables for use in a final model Helms [101 uses known

characteristics of the predictor variables to define 4 and then

- •

. 

estimates the integrated variances of the subset models as a (biased)

mimic of the corresponding integrated mean squared errors. Park

[22], analyzing a p = 3 variable model, determines 4 by defining
W (u) to be a uniform weight function and R to be the unit cube.

He then estimates integrated mean squared error by evaluating J

for various subsets of the full set of predictor variables using

the least squares estimates of the parameters from the full model.

Both of these procedures for estimating integrated mean squared

error yield biased estimators of J.

In this section we will develop an alternate approach for esti—

mating integrated mean squared error. We will use characteristics

of the data and each of the three regression estimators discussed

in this paper to define a region of prediction B. and an estimator

~3 so that J is an unbiased estimator of the corresponding J. An

I” example illustrating some of the characteristics of this estimation

scheme concludes the section.

• Since we are primarily concerned with multicollinear data, a

transformation to the principal axes of X’X rather than using the

•

• original coordinate system allows R to be defined to reflect anom-

alies in the data. For example , if X is severely multicollinear

there is very little information in the p dimensional space of the

predictor variables in directions defined by the latent vectors

corresponding to the small latent roots of XX . The region of

prediction, R, should be chosen to reflect such characteristics
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in the data ; otherwise one is in danger of extrapolation with the

• predictor. So let

t = V ’ u , (6.1)

where ii is again a vector of standardized values of the p predictor

variables in the original coordinate system, and t represents this

same point in the orthogonal coordinate system defined by the p

latent vectors of X’X; i.e., t. = V u  j = 1, 2, ..., p. Let W*(t)

and R* denote weight functions and regions of the predictor variables,

• respectively, in the transformed coordinate system.

Consider now the use of a rectangular region of interest in the

transformed space which is defined by

R* = : — S~ < t .  < 5 . ,  j = 1 , 2, ... , p }, (6.2)

where s~ ~ 0 wil l be defined for each estimator and represents the

limits imposed on the use of a prediction equation in each direction

‘S of the trans formed space of predictor variables. For illustrative

purposes, a uniform weight function , W~ (t), will be used to discuss

• the estimation of 3 although, as mentioned in Section 3, many other

weight functions behave similarly. Accordingly, define

• p
• • 3 II (2s•)

1 
t~R*

j=1 ~ 
—

W*(t) = (6.3)
- 

0 t~ R* .

_ _ _
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I From (6.2) and (6.3),

• 4 = I...! tt’W~ Ct)dt = diagCs
1
, s2

, ... , s ) .  (6.4)
• R* P

• Noting that in the transformed space CX’X ) 1 
= diag (2.~~ , 2.~~

..., t~~), we find from (5.1) thatp

— 1 2  2~~
’ —l3 fl 0 + 0  ~~ 2.. s ., (6.5)

j=l 3 ~

and, hence, that an unbiased estimator of (6.5), regardless of the

• choice of the s~ (provided they are not random variables), is

1
~~2 “ 2 w —l3 fl 0 + 0  E L . s~~, (6.6)

• LS j= l 3 ~

I

where ~
2 

= MSE is the usual unbiased estimator of 2

Similarly, in the transformed space (X ’X )  = diag(0 , 0 , ..., 0 ,

I 9, 1 , • •
~~~~
, 9,~~ ) and ( 5 . 2 )  becomesr+l p

‘
p

— 1 2  —1 
r 

* 
2J = n a + a Z 1. s + ~ (V .a )  s - .  (6.7)PC 

j =r+l ~ j =l ~

• • —1 2 —l~2 ~2 .We again estimate n ~ by n a , but rather than use a in the

second term of (6.7), we will use MSE C , defined as

MSE = {Y’ (I — n 1
ll’ — x (X’X) X’)Y)/(n—p—l+r)

I PC -- -

I = {(n-p-1)~
2 

+ E

L j~~~
J ~

i.e. let
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P The bias of j is
PC

• p r
E[J pcI = 

~ £)s.}{ E 2..CV~ B)
2
/(n-p—l+r)}

j=r+1 3 ~ j=i 3 J

r
— 1 (V!8)2s..

• j=l 3 ~

If we now restrict the region of prediction R* so that

(n—p—l+r) 1
2.. j = 1, 2 , ... , r

= (6 .9 )
3

(p—r) 2.. j = r+l , r+2 , .. ., p

then E[J I = 3 . Note that (6.9) does restrict prediction most
PC PC

in directions for which there is little information on the predictor

variables (i.e. directions defined by latent vectors corresponding

to small latent roots) and least in directions for which there is

the most information.

di The integrated mean squared error of the RB. estimator using

(6.4) is given by

3
RR 

= fl
l
C
2+ 0 E 9 , ( 9 ,+k)

2
+k
2
~~~ (2. +k)

2(;B)2 (6.10)

for nonstochastjc choices of k. Define (note that this is not the

usual mean squared error definition of the ridge estimator)

1 1 p 
1MSE RH = {Y’(I—n ii’—X (X ’X+kI) X ’) Y) / ( n — l — E 2 . ( 2 ..+k)

j=l

= {(n-p-l);
2
+k E 2.T

1(2..+k)
1
c~ }/(n-l- E

j=l 3 ~ j=l 3 
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We estimate 3 with

-1~ 2 
p 

-23RR 
= n a + MSEHR E 2..(2..+k) s . . (6.11)

j=l

This is an unbiased estimator of if we restrict R* so that

1 p 
1s . = k 2.~ (Z . + k ) / (n  — 1 — ~ 2 . ( 2 .  + k)  ) ,  (6.12)

- •  3 3 j=i~~ ~

and also use

k = p/(n — 1). (6.13)

It is especially important to observe that in obtaining an unbiased

estimator of 3HR’ a nonstochastic rule for selecting the rid ge

shrinkage parameter k resulted.

To illustrate the use of these estimators we will examine the

nine-variable data analyzed by Webster , Gunst , and Mason [23] . A

least squares backward elimination of this data resulted in a final

predictor involving four of the nine predictor variables : X , X
‘S 1 4

X6 , and X8, with X1 and X
4 

having a large pairwise multicollinearity

(r 14 
= 0.978) . Using a latent root regression backward elimination

procedure (Webster, Gunst, and Mason [23, 24]), the final predictor

contains only two predictor variables, X
6 
and X

9
, which do not appear

strongly multicollinear (r
69 

= 0.143). Both these subset predictors

• appear to be reasonably adequate predictors of the n = 15 observed

responses (coefficients of determination for the two models are

0.80 and 0.75 , respectively, and the residual mean squared errors

are 2.40 and 2.49, while the corresponding statistics for the full

model are 0.83 and 4.12).

_ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Tables 1 and 2 contain the statistics used in the evaluatiofl

of the integrated mean squared errors of the prediction equations

• for each of the above subset models. The s . values for HR and PC
3

were obtained from (6.12) and (6.9), respectively, while those for

LS were chosen to be the smaller ( in  absolute value) of the upper

• and lower bounds on the observed t. = V~u., i = 1, 2, ..., n (observe
3 — 3—i

that these values are merely the observed principal components of

~ ~
-: X). This choice of s. for LS insures that we do not attempt to

extrapolate along the axes in the transformed space .

TABLE 1. STATISTICS FOR THE TWO VARIABLE MODEL: X
6
, X

9
.

Values of s . Range on t .
— 3

j  2. . HP. PC LS LOWER UPPER
— — _  _

1 .8567 .4892 .0659 .3521 — .4240 .3521

2 1.1433 .8399 1.1433 .3927 — .3927 .6324

I 
~LS 

= 2.0406 = 7.8419 = 3.5931 (k=0.l429)

di
TABLE 2. STATISTICS FOR THE FOUR VARIABLE MODEL: X

1
,X4 , X6,X8.

• Values of s. Range on t ,
:3 3

• HR PC LS LOWER UPPER

1 .0115 .0010 .0010 .0439 — .0708 .0439
p

2 .2355 .0362 .0785 .1718 — .2771 .1718

-• 

3 .8574 .2895 .2858 .2715 — .4816 .2715

4 2.8956 2.7210 .9653 .8030 — .8030 .8454

• 
= 12.5227 

~
1
PC = 3.1877 = 4.1786 (k=O.2857)
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• Consider first the two variable model. The region of prediction

for PC is greatly distorted when comparison is made with the range

on t~ for each of the two dimensions . The region of prediction

for HR allows a great deal of extrapolation in the second dimension.

The estimates of J indicate that the LS prediction equation should

be preferred over PC and RB., with the PC predictor clearly inferior

to the other two. These results are not especially surprising since

there is no strong multicollinearity in this model.

The statistics presented in Table 2 point out the advantages

of using either biased estimator of ~ in a prediction equa tion when

the data is multicollinear . The regions of prediction for PC and

HR are conservative in the first two dimensions when compared with

the range on the t~ . The range of prediction for RR in the last

dimension is quite anticonservative . The estimated integrated mean

• squared errors of PC and RB. indicate that if prediction is confined

to the regions in Table 2, both biased predictors greatly reduce

‘S the overall variability of the LS predictor .

7. SUMMARY AND RECOMMENDATIONS

The example in the previous section suggests several questions

which need to be answered before a comparison of LS , PC , and HR

prediction equations can be regarded as conclusive . First, the

restriction of an unbiased estimator of 3 may be detrimental to

the evaluation of the ridge prediction equation . The values of

s . for the largest dimension in each subset model was much larger

• ~ than the bounds of the data in these directions. Yet a smaller - •

- —— —-- -——-“ •~~-— --—---.‘••••• ~
__ _ __ z__ £~~-~~• — • • • • -  -~~ -- - --—- .---• •---‘• •---s~~
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value of s . renders biased for Further investigations on

• the desirability of unbiased estimators of 3 are needed to resolve

- 
-

. 

this problem.

• In addition to the estimation problems, additional choices of

weigh t functions should be considered . For example , letting 4 = x’ x

deserves consideration, as Helms [9] argues. Finally , how should

• comparisons be made if the model is misspecified? These problems

are currently under investigation and additional results will be

reported in the near future.

• The unresolved questions jus t raised do not detract from the

main thrust of this paper: integrated mean squared error is a

flexible tool for evaluating competing prediction equations . The

* general formulation of applying this criterion to least squares ,

- principal component , and ridge regression prediction equations has

been presented for a correctly specified model , and comparisons have

I 
been made among the predictions for a general class of weight func-

‘S tions over a specific region of interest. By allowing the regions

of prediction to vary, unbiased estimators of the integrated mean

squared error of the three prediction equations were obtained and

a numerical example illustrating the use of the procedures was

discussed .
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I Figure .

-~ Inte grated Varian ces as a Function of r12

-~~ v *
3.0 -

* * 1 %• VLs =V RR~o1~- ..

2.0
• 

. 

VRR (.I)

• l.0 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \

RR

v~c

Q I I 1 1 I 1 I

0 0.2 0.4 0.6 0.8 1.0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ——-—.~~~- - •—-rn-- --
--- - -

~~
-•- •- -- • • - - • • •- - -• - • --•-.-• •~



—•- • - ~ — •— ~~~ • • - - ~~~~ •~~~~~~~~~~ • -•— -----~~~~~~~~-- --•-- --—— -- • •~~~~~~~~ • •—- — -- -••r~~ .- •~~~r-
~~ 

-

‘~ Figure 2.
I ’ 

Compar ison of Integrat ed Variance of PCR and R R: k for Two Regressor Vari ables

••
; 1.0 -

~ 

- 
- 

VPC > VRR

fl2



-.--•••~ • - -

31

• Figure. 3.

• 
Comparison of Integrated Bias With p 2 , r12 0.95.

(Shaded Region Indicates Bpc< 8RF~
• Non-Shaded Region Indicates B~~> BRR ).
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